A Few Words About Safety

SERVICE INFORMATION

The service and repair information contained in this manual is intended for use by qualified, professional technicians. Attempting service or repairs without the proper training, tools, and equipment could cause injury to you and/or others. It could also damage this Honda product or create an unsafe condition.

This manual describes the proper methods and procedures for performing service, maintenance, and repairs. Some procedures require the use special tools. Any person who intends to use a replacement part, service procedure or a tool that is not recommended by Honda, must determine the risks to their personal safety and the safe operation of this product.

If you need to replace a part, use Honda Genuine parts with the correct part number or an equivalent part. We strongly recommend that you do not use replacement parts of inferior quality.

For Your Customer's Safety

Proper service and maintenance are essential to the customer's safety and the reliability of this product. Any error or oversight while servicing this product can result in faulty operation, damage to the product, or injury to others.

AWARNING

Improper service or repairs can create an unsafe condition that can cause your customer or others to be seriously hurt or killed.

Follow the procedures and precautions in this manual and other service materials carefully.

For Your Safety

Because this manual is intended for the professional service technician, we do not provide warnings about many basic shop safety practices (e.g., hot parts-wear gloves). If you have not received shop safety training or do not feel confident about your knowledge of safe servicing practices, we recommend that you do not attempt to perform the procedures described in this manual.

Some of the most important general service safety precautions are given below. However, we cannot warn you of every conceivable hazard that can arise in performing service and repair procedures. Only you can decide whether or not you should perform a given task.

Failure to properly follow instructions and precautions can cause you to be seriously hurt or killed.

Follow the procedures and precautions in this manual carefully.

Important Safety Precautions

Make sure you have a clear understanding of all basic shop safety practices and that you are wearing appropriate clothing and using safety equipment. When performing any service task, be especially careful of the following:

- Read all of the instructions before you begin, and make sure you have the tools, the replacement or repair parts, and the skills required to perform the tasks safely and completely.
- Protect your eyes by using proper safety glasses, goggles, or face shields any time you hammer, drill, grind, or work around pressurized air, pressurized liquids, springs, or other stored-energy components. If there is any doubt, put on eye protection.
- Use other protective wear when necessary, for example gloves or safety shoes. Handling hot or sharp parts can cause severe burns or cuts. Before you grab something that looks like it can hurt you, stop and put on gloves.
- Protect yourself and others whenever you have equipment hoisted in the air. Any time you lift this product with a hoist, make sure that the hoist hook is securely attached to the product.

Make sure the engine is off before you begin any servicing procedures, unless the instruction tells you to do otherwise. This will help eliminate several potential hazards:

- Carbon monoxide poisoning from engine exhaust. Be sure there is adequate ventilation whenever you run the engine.
- Burns from hot parts. Let the engine and exhaust system cool before working in those areas.
- Injury from moving parts. If the instruction tells you to run the engine, be sure your hands, fingers, and clothing are out of the way.

Gasoline vapors and hydrogen gasses from batteries are explosive. To reduce the possibility of a fire or explosion, be careful when working around gasoline or batteries.

- Use only a nonflammable solvent, not gasoline, to clean parts.
- Never store gasoline in an open container.
- Keep all cigarettes, sparks, and flames away from the battery and all fuel-related parts.

CONTENTS

SPECIFICATIONS	1
SERVICE INFORMATION	2
MAINTENANCE	3
TROUBLESHOOTING	4
COVER	5
FUEL SYSTEM	6
GOVERNOR SYSTEM	7
CHARGING SYSTEM	8
IGNITION SYSTEM	9
STARTING SYSTEM	10
OTHER ELECTRICAL	11
LUBRICATION SYSTEM	12
CYLINDER	13
CRANKCASE	14
WIRING DIAGRAMS	15

INTRODUCTION

This manual covers the service and repair procedures for the following Honda models:

Model	Serial Numbers
GXV630RH	GJACH-1000001 through 9999999
GXV690RH	GJAEH-1000001 through 9999999

All information contained in this manual is based on the latest product information available at the time of printing. We reserve the right to make changes at any time without notice.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher. This includes text, figures, and tables.

As you read this manual, you will find information that is preceded by a <u>NOTICE</u> symbol. The purpose of this message is to help prevent damage to this Honda product, other property, or the environment.

SAFETY MESSAGES

Your safety and the safety of others are very important. To help you make informed decisions, we have provided safety messages and other safety information throughout this manual. Of course, it is not practical or possible to warn you about all the hazards associated with servicing these products. You must use your own good judgment.

You will find important safety information in a variety of forms, including:

- Safety Labels on the product.
- Safety Messages preceded by a safety alert symbol 🗥 and one of three signal words, DANGER, WARNING, or CAUTION. These signal words mean:

ADANGER You WILL be KILLED or SERIOUSLY HURT if you don't follow instructions.

AWARNING You CAN be KILLED or SERIOUSLY HURT if you don't follow instructions.

ACAUTION You CAN be HURT if you don't follow instructions.

Instructions – how to service these products correctly and safely.

ALL INFORMATION, ILLUSTRATIONS, DIRECTIONS, AND SPECIFICATIONS INCLUDED IN THIS PUBLICATION ARE BASED ON THE LATEST PRODUCT INFORMATION AVAILABLE AT THE TIME OF APPROVAL FOR PRINTING. American Honda Motor Co., Inc. RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME WITHOUT NOTICE AND WITHOUT INCURRING ANY OBLIGATION WHATSOEVER. NO PART OF THIS PUBLICATION MAY BE REPRODUCED WITHOUT WRITTEN PERMISSION. THIS MANUAL IS WRITTEN FOR PERSONS WHO HAVE ACQUIRED BASIC KNOWLEDGE OF MAINTENANCE ON Honda PRODUCTS.

American Honda Motor Co., Inc.

Date of Revision: May 2022

ABBREVIATIONS

The following abbreviations may be used to identify the respective parts or systems in this manual.

Abbreviated	Full term		
	Alterneter		
ACG	Allemator		
API	American Petroleum Institute		
	Approximately		
Assy.	Assembly		
ATE	After Top Dead Center		
AIF	Automatic Transmission Fluid		
AII	Attachment		
BAI	Battery		
BDC	Bottom Dead Center		
BTDC	Before Top Dead Center		
BARO	Barometric Pressure		
CKP	Crankshaft Position		
Comp.	Complete		
CMP	Camshaft Position		
CYL	Cylinder		
DLC	Data Link Connector		
EBT	Engine Block Temperature		
ECT	Engine Coolant Temperature		
ECU	Engine Control Unit		
EMT	Exhaust Manifold Temperature		
EOP	Engine Oil Pressure		
EX	Exhaust		
F	Front or Forward		
GND	Ground		
HO2S	Heated Oxygen sensor		
IAC	Idle Air Control		
IAT	Intake Air Temperature		
I.D.	Inside diameter		
IG or IGN	Ignition		
IN	Intake		
INJ	Injection		
L.	Left		
MAP	Manifold Absolute Pressure		
MIL	Malfunction Indicator Lamp		
O.D.	Outside Diameter		
OP	Optional Part		
PGM-FI	Programmed-Fuel Injection		
P/N	Part Number		
Qty	Quantity		
R.	Right		
SAE	Society of Automotive Engineers		
SCS	Service Check Signal		
STD	Standard		
SW	Switch		
TDC	Top Dead Center		
TE	Temperature of Engine		
TP	Throttle Position		
VTEC	Variable Valve Timing & Valve Lift Flectronic Control		

BI	Black	G	Green	Br	Brown	Lg	Light green
Y	Yellow	R	Red	0	Orange	Р	Pink
Bu	Blue	W	White	Lb	Light blue	Gr	Gray

NOTES

1. SPECIFICATIONS

SERIAL NUMBER LOCATION ······1-2
DIMENSIONS AND WEIGHTS SPECIFICATIONS······1-2
ENGINE SPECIFICATIONS ·······1-3

PERFORMANCE CURVES ·······1-	4
DIMENSIONAL DRAWINGS ·······1-	6
ENGINE MOUNT / PTO DIMENSIONAL DRAWINGS ······ 1-	7

SERIAL NUMBER LOCATION

The engine serial number [1] is stamped on the crankcase.

The type code is stamped on the crankcase near the engine serial number.

Refer to them when ordering parts or making technical inquiries.

DIMENSIONS AND WEIGHTS SPECIFICATIONS

Overall length	443 mm (17.4 in)
	Screen grid cover type: 449 mm (17.7 mm)
Overall width	420 mm (16.5 in)
Overall height	Q type: 446 mm (17.6 in)
	Q type, screen grid cover type: 475 mm (18.7 in)
	T type: 463 mm (18.2 in)
	T type, screen grid cover type: 492 mm (19.4 in)
Dry weight	Q type: 45.7 kg (100.8 lb)
	Q type, screen grid cover type: 46.5 kg (102.5 lb)
	T type: 45.9 kg (101.2 lb)
	T type, screen grid cover type: 46.7 kg (103.0 lb)
Operating weight	Q type: 47.6 kg (104.9 lb)
	Q type, screen grid cover type: 48.4 kg (106.7 lb)
	T type: 47.8 kg (105.4 lb)
	T type, screen grid cover type: 48.6 kg (107.1 lb)
Maximum angle of inclination	Forward and backward: 20°
	Left and right: 20°

ENGINE SPECIFICATIONS

Model	GXV630RH	GXV690RH	
Description code	GJACH GJAEH		
Туре	4 stroke, overhead valve, 90° V-twin cylinder		
Displacement	688.0 cc (4	11.97 cu-in)	
Bore x stroke	78.0 x 72.0 mm	(3.07 x 2.83 in)	
Net power (SAE J1349)*	15.5 kW (20.8 HP) @ 3,600 rpm	16.5 kW (22.1 HP) @ 3,600 rpm	
Continuous rated power	10.5 kW (14.1 HP) @ 3,000 rpm	11.5 kW (15.4 HP) @ 3,000 rpm	
Maximum net torque (SAE J1349)*	48.3 N⋅m (4.93 kg-m, 3	35.6 ft-lb) @ 2,500 rpm	
Maximum rpm (at no load)	See pa	ige 7-4.	
Compression ratio	9.3 :	± 0.2	
Fuel consumption	5.0 Liters (1.32 US gal,	5.7 Liters (1.51 US gal,	
(at continuous rated power)	1.10 lmp gal)/h	1.25 lmp gal)/h	
Ignition system	C.D.I. (Capacitor Dischar	ge Ignition) type magneto	
Ignition timing	B.T.D.C. 4°/1,000 rpm		
Spark advancer type	Electronic type		
Spark advancer performance	B.T.D.C. 4 ~ 23°		
Spark plug	ZFR5F (NGK)		
Lubrication system	Force	d feed	
Oil capacity	Without oil filter replacement: 1.	7 Liters (1.80 US qt, 1.50 Imp qt)	
	With oil filter replacement: 1.9	Liters (2.01 US qt, 1.67 Imp qt)	
Recommended oil	SAE 5W-30, 10W-30 API se	rvice classification SJ or later	
Cooling system	Force	ed air	
Starting system	Starter	r motor	
Stopping system	Ignition ci	rcuit open	
Carburetor	2 barrel horizontal	type, butterfly valve	
Air cleaner	Dual	l type	
Governor	Mechanical centrifugal		
Breather system	Reed valve type, PCV (Positive Crankcase Ventilation) type		
Fuel used	E10		

*: The power rating of the engine indicated in this document is the net power output tested on a production engine for the engine model and measured in accordance with SAE J1349 at 3,600 rpm (net power) and at 2,500 rpm (max net torque). Mass production engines may vary from this value. Actual power output for the engine installed in the final machine will vary depending on numerous factors, including the operating speed of the engine in application, environmental conditions, maintenance, and other variables.

PERFORMANCE CURVES

GXV630RH

GXV690RH

DIMENSIONAL DRAWINGS

ENGINE MOUNT / PTO DIMENSIONAL DRAWINGS ENGINE MOUNT BASE

Unit: mm (in)

Q TYPE

Unit: mm (in)

T TYPE

2. SERVICE INFORMATION

SERVICE RULES 2-2	LUBRICATION & SEAL POINT ······ 2-5
SYMBOLS 2-2	TOOLS 2-6
MAINTENANCE STANDARDS ·······2-3	HARNESS ROUTING ······2-8
TORQUE VALUES ······2-4	TUBE ROUTING ······ 2-10

SERVICE RULES

- Use Honda Genuine or Honda-recommended parts and lubricants or their equivalents. Parts that do not meet Honda's design specifications may damage the unit.
- Use the special tools designed for the product.
- · Install new gaskets, O-rings, etc. when reassembling.
- When torquing bolts or nuts, begin with larger-diameter or inner bolts first and tighten to the specified torque diagonally, unless a particular sequence is specified.
- · Clean parts in cleaning solvent upon disassembly. Lubricate any sliding surfaces before reassembly.
- After reassembly, check all parts for proper installation and operation.
- Many screws used in this machine are self-tapping. Be aware that cross-threading or overtightening these screws will strip the threads and ruin the hole.

Use only metric tools when servicing this unit. Metric bolts, nuts, and screws are not interchangeable with non-metric fasteners. The use of incorrect tools and fasteners will damage the unit.

SYMBOLS

The symbols used throughout this manual show specific service procedures. If supplementary information is required pertaining to these symbols, it will be explained specifically in the text without the use of the symbols.

	Replace the part(s) with new one(s) before assembly.
	Use the recommend engine oil, unless otherwise specified.
	Use molybdenum oil solution (mixture of the engine oil and molybdenum grease in a ratio of 1:1).
GREASE	Use multi-purpose grease (lithium based multi-purpose grease NLGI #2 or equivalent).
J'I SEADS	Apply sealant.
$(O \times O) (O)$	Indicates the diameter, length, and quantity of metric bolts used.
page 1-1	Indicates the reference page.

MAINTENANCE STANDARDS

				Unit: mm (in)
Part	Item		Standard	Service limit
Maximum speed (at no load)		load)	See page 7-4.	-
Engine	Idle speed		1,400 ± 150 rpm	-
	Cylinder compression		0.5 ~ 0.7 MPa (5.09 ~ 7.14 kgf/cm ² ,	
	Cylinder compression		73 ~ 102 psi) @ 500 rpm	_
Cylinder	Sleeve I.D.		78.000 ~ 78.015 (3.0709 ~ 3.0715)	78.150 (3.0768)
	Skirt O.D.		77.975 ~ 77.985 (3.0699 ~ 3.0703)	77.875 (3.0660)
Piston	Piston-to-cylinder clear	ance	0.015 ~ 0.040 (0.0006 ~ 0.0016)	0.12 (0.005)
	Piston pin bore I.D.		18.002 ~ 18.008 (0.7087 ~ 0.7090)	18.042 (0.7103)
Picton nin	Pin O.D.		17.994 ~ 18.000 (0.7084 ~ 0.7087)	17.95 (0.707)
r istori piri	Piston pin-to-piston pin	bore clearance	0.002 ~ 0.014 (0.0001 ~ 0.0006)	0.08 (0.003)
	Ping side clearance	Тор	0.050 ~ 0.080 (0.0020 ~ 0.0031)	0.15 (0.006)
	King side clearance	Second	0.050 ~ 0.080 (0.0020 ~ 0.0031)	0.15 (0.006)
		Тор	0.200 ~ 0.350 (0.0079 ~ 0.0138)	0.450 (0.0177)
Piston rings	Ring end gap	Second	0.200 ~ 0.350 (0.0079 ~ 0.0138)	0.600 (0.0236)
		Oil (side rail)	0.20 ~ 0.70 (0.008 ~ 0.028)	0.90 (0.035)
	Pipa width	Тор	1.140 ~ 1.155 (0.0449 ~ 0.0455)	1.120 (0.0441)
		Second	1.140 ~ 1.155 (0.0449 ~ 0.0455)	1.120 (0.0441)
	Small end I.D.		18.006 ~ 18.018 (0.7089 ~ 0.7094)	18.07 (0.711)
Connecting	Big end I.D.		44.988 ~ 45.012 (1.7712 ~ 1.7721)	45.050 (1.7736)
rod	Big end oil clearance		0.005 ~ 0.039 (0.0002 ~ 0.0015)	0.070 (0.0028)
	Big end side clearance		0.2 ~ 0.4 (0.008 ~ 0.016)	1.000 (0.0394)
	Crankpin O.D.		44.973 ~ 44.983 (1.7706 ~ 1.7710)	44.920 (1.7685)
Crankshaft	Main journal O.D.		39.984 ~ 40.000 (1.5742 ~ 1.5748)	39.930 (1.5720)
	Thrust washer thickness		0.95 ~ 1.05 (0.037 ~ 0.041)	0.8 (0.03)
	Camshaft bearing I.D.		17.016 ~ 17.027 (0.6699 ~ 0.6704)	17.06 (0.672)
Crankcase	Main journal I.D.		40.025 ~ 40.041 (1.5758 ~ 1.5764)	40.06 (1.577)
	Crankshaft axial clearance		0.05 ~ 0.45 (0.002 ~ 0.018)	1.0 (0.04)
Camshaft bearing I.D.			17.016 ~ 17.027 (0.6699 ~ 0.6704)	17.06 (0.672)
Oli pan	Main journal I.D.		40.025 ~ 40.041 (1.5758 ~ 1.5764)	40.06 (1.577)
	Valve clearance	IN	0.08 ± 0.02	
		EX	0.10 ± 0.02	_
	Value stom O.D.	IN	5.475 ~ 5.490 (0.2156 ~ 0.2161)	5.400 (0.2126)
	valve stem 0.D.	EX	5.435 ~ 5.450 (0.2140 ~ 0.2146)	5.300 (0.2087)
Values	Valve guide I.D.	IN/EX	5.500 ~ 5.512 (0.2165 ~ 0.2170)	5.560 (0.2189)
valves	Guide-to-stem	IN	0.010 ~ 0.037 (0.0004 ~ 0.0015)	0.110 (0.0043)
	clearance	EX	0.050 ~ 0.077 (0.0020 ~ 0.0030)	0.130 (0.0051)
	Valve seat width		1.0 ~ 1.2 (0.04 ~ 0.05)	2.1 (0.08)
	Valve spring free lengt	า	38.3 (1.51)	36.8 (1.45)
	Valve spring perpendic	ularity	2° max.	_
	Com boight	IN	29.506 ~ 29.706 (1.1617 ~ 1.1695)	29.36 (1.156)
Camshaft	Cam height	EX	29.410 ~ 29.600 (1.1579 ~ 1.1657)	29.26 (1.152)
	Camshaft O.D.		16.982 ~ 17.000 (0.6686 ~ 0.6693)	17.100 (0.6732)
Volvo liftor	Valve lifter I.D.		6.010 ~ 6.040 (0.2366 ~ 0.2378)	6.070 (0.2390)
valve inter	Valve lifter shaft O.D.		5.970 ~ 6.000 (0.2350 ~ 0.2362)	5.940 (0.2339)
	Rocker arm I.D.		6.000 ~ 6.018 (0.050 ~ 0.077)	6.043 (0.2379)
Rocker arm	Rocker arm shaft O.D.		5.960 ~ 5.990 (0.2346 ~ 0.2358)	5.953 (0.2344)
	Rocker arm shaft bear	ng I.D.	6.000 ~ 6.018 (0.050 ~ 0.077)	6.043 (0.2379)
	Oil pressure		2.8 kgf/cm ² (39.8 psi) @ 2,000 rpm	-
	Tip clearance		0.15 (0.006)	0.30 (0.012)
Oii pump	Outer rotor-to-housing	clearance	0.150 ~ 0.210 (0.0059 ~ 0.0083)	0.30 (0.012)
ł	Outer rotor-to-pump cover clearance		0.04 ~ 0.09 (0.002 ~ 0.004)	0.11 (0.004)

SERVICE INFORMATION

Part	ltem		Standard	Service limit
		GXV630RH	TAF2 TYPE: No.1 cylinder: #108 No.2 cylinder: #108 Except TAF2 TYPE: No.1 cylinder: #110	_
	Main jet		No.2 cylinder: #112 TAF2 TYPE:	
		GXV690RH	No.1 cylinder: #115 No.2 cylinder: #118 Except TAF2 TYPE:	
Carburatar			No.1 cylinder: #120 No.2 cylinder: #122	-
Carburetor	Pilot screw opening	GXV630RH	No.1 cylinder: 1-3/4 turns out No.2 cylinder: 2-3/8 turns out	-
			Except TAF2 TYPE: No.1 cylinder: 2-7/8 turns out No.2 cylinder: 2-3/4 turns out	-
		GXV690RH	TAF2 TYPE: No.1 cylinder: 3 turns out No.2 cylinder: 3 turns out	-
			Except TAF2 TYPE: No.1 cylinder: 1-5/8 turns out No.2 cylinder: 2-1/8 turns out	_
	Float height		15.5 (0.61)	_
Spark plug	Gap		0.7 ~ 0.8 (0.028 ~ 0.031)	_
Ignition Coil	Air gap		0.2 ~ 0.6 (0.01 ~ 0.02)	-
Starter	Brush length		10 (0.4)	6 (0.2)
motor	Mica depth		-	0.2 (0.01)
Charge coil	Resistance	17 A	0.18 ~ 0.28 Ω	_
Charge coll	redistance	26 A	0.17 ~ 0.25 Ω	-

TORQUE VALUES ENGINE TORQUE VALUES

Itom	Thread Dia (mm)	Torque values			
item	Thread Dia. (IIIII)	N∙m	kg-m	ft-lb	in·lb
Cylinder nut	M10 x 1.25	37	3.8	27	
Oil drain plug bolt	M20 x 1.5	45	4.5	33	
Oil filter cartridge	M20 x 1.5	12	1.2	9	106
Spark plug	M14 x 1.25	18	1.8	13	159
Connecting rod bolt	M7 x 1.0	22	2.2	16	195
Tappet adjusting nut	M5 x 0.5	7.5	0.8	5.5	66
Governor arm nut	M6 x 1.0	11	1.1	8	97
Cable holder bolt	M5 x 0.8	1.7	0.2	1.3	15
Flywheel nut	M20 x 1.5	245	25	181	
Fuel pump cover screw	M5 tapping screw	4.2	0.4	3.1	35
Fan cover protector screw	M4 special screw	1.7	0.2	1.3	15
Fan cover screw	M6 x 1.0 special screw	4.4	0.4	3.2	39
Screen grid cover bolt	M6 x 1.0	8.5	0.9	6.3	75
Screen grid cover nut	M6 x 1.0	8.5	0.9	6.3	75
Screen grid cover stud bolt	M6 x 1.0	12	1.2	9	106
Fuel pump screw	M6 x 1.0	5	0.5	3.7	44
Inlet manifold bolt	M8 x 1.25	19	1.9	14	168
Oil pressure switch	PT1/8	9	0.9	6.6	80
Sealing bolt	PT1/8	9	0.9	6.6	80
Choke cable adjust nut	M6 x 1.0	8	0.8	5.9	52
Starter motor terminal nut	M8 x 1.25	9	0.9	6.6	80
Control cover screw	M6 x 1.0	8	0.8	5.9	52
Breather valve screw	M3 x 0.5	1	0.1	0.7	9
Fuel cut solenoid	-	8.8	0.9	6.5	58

STANDARD TORQUE VALUES

Itom	Throad Dia (mm)	Torque values				
item	Thead Dia. (IIIII)	N∙m	kg-m	ft-lb	in∙lb	
Screw	4 mm	2.1	0.2	1.5	18	
	5 mm	4.2	0.4	3.1	35	
	6 mm	9	0.9	6.6	80	
Bolt and nut	4 mm	3.4	0.4	2.5	27	
	5 mm	5.2	0.5	3.8	44	
	6 mm	10	1.0	7.0	89	
	8 mm	22	2.2	16	195	
	10 mm	34	3.5	25	—	
	12 mm	54	5.5	40	—	
Flange bolt and nut	5 mm	5.3	0.5	3.9	44	
	6 mm	12	1.2	9.0	106	
	8 mm	27	2.7	20	—	
	10 mm	39	4.0	29	—	
SH (Small head) flange bolt	6 mm	9	0.9	7.0	80	

LUBRICATION & SEAL POINT

Location	Material		
Crankshaft gear			
Piston outer surface and piston pin hole			
Connecting rod bolt threads and seating surface			
Camshaft cam profile, bearing, decompressor and gear			
Valve lifter shaft and slipper			
Valve stem seal contact area of seal lip			
Valve stem sliding surface and stem end			
Valve spring			
Push rod end			
Rocker arm bearing and slipper	Engine eil		
Tappet adjusting screw and nut threads and seating surface			
Rocker arm shaft			
Crankshaft thrust washer			
Flywheel nut threads and seating surface			
Oil pump gear outer surface and rotor			
Governor weight holder gear			
Governor arm shaft			
Cylinder nut and bolt threads and seating surface			
Oil seal outer surface			
Oil filter cartridge O-ring			
Crankshaft pin and journal			
Crankcase bearing			
Crankcase cover bearing	-		
Piston pin outer surface			
Piston ring	Use molybdenum oil solution		
Cylinder inner surface	(mixture of the engine oil and molybdenum grease		
Connecting rod big and small end bearing	in a ratio of 1:1)		
Oil pump shaft			
Governor weight holder journal			
Governor holder shaft			
Governor slider			
Oil seal lip	Multi-purpose grease		
O-ring			
Cylinder			
Crankcase cover	Liquid sealant (ThreeBond [®] 1207B)		
Breather cover			
Oil pressure switch	Liquid sealant (ThreeBond 1207B, 1141G, 1215)		
Sealing bolt			
Tube end	2 cycle oil		

TOOLS SPECIAL TOOLS

Special tools used in this manual can be ordered using normal American Honda parts ordering procedures.

Float level gauge	Pilot 17 mm	Driver
07401-0010001	07746-0040400	07749-0010000
Tappet adjusting wrench 3 mm	Valve guide reamer 5.5 mm	Oil seal driver attachment 60 mm
07908-KE90200	07984-200000D	07GAD-PG40100
Oil filter wrench 65 mm	Flywheel puller	Pilot screw wrench (D)
07AAA-PLCA100	070PC-ZDW0100	07MMA-MT3010B

COMMERCIALLY AVAILABLE TOOLS

Commercially available tools in this manual are not available through the American Honda Parts Department. They can be ordered through the Tool and Equipment program by calling 888-424-6857.

Tool name	Tool number	Application
Digital multimeter	FLU88	Idle speed / maximum speed / electrical testing
Engine oil pressure gauge kit	EEPV303A	Cylinder block oil pressure testing / inspection / cylinder compression testing
Adapter, 1/8 x 28 BSPT	AT77AH (discontinued, see below)	Cylinder block oil pressure testing / inspection
Oil Pressure Adapter Hose <i>and</i> Quick Disconnect Coupling 1/4" - 18 NPTF	GSI638GAT77 and MT26E3	
Leak down tester	KLIAT1006M	Cylinder leak down
Valve lapper	LIL21100	Valve seat width inspection / valve seat reconditioning
Cleaning brush		Clean combustion chamber
Cutter, 30 x 45 degree 128	NWYCU128	
Cutter, 45 degree 122	NWYCU122	
Cutter, 31 degree 115	NWYCU115	
Cutter, 60 degree 111	NWYCU111	Valve seat reconditioning
Solid pilot, 5.5 mm	NWY100-5.5MM	valve seat reconditioning
T-handle	NWYTW505	
Adapter	NWYTW501	
Extension, 6"	NWYTW5036H	
Fuel clamp pliers	HCP6	Used to clamp the fuel line during fuel filter replacement
Flywheel puller	OTC7403	Flywheel removal

HARNESS ROUTING

SERVICE INFORMATION

TUBE ROUTING

MAINTENANCE SCHEDULE ····································
ENGINE OIL LEVEL CHECK ····································
ENGINE OIL CHANGE ····································
OIL FILTER REPLACEMENT ····································
AIR CLEANER CHECK / CLEANING ········ 3-4
AIR CLEANER REPLACEMENT ····································
SPARK PLUG CHECK / ADJUSTMENT····· 3-5

SPARK PLUG REPLACEMENT ························3-6
IDLE SPEED CHECK / ADJUSTMENT ······ 3-6
VALVE CLEARANCE CHECK / ADJUSTMENT ······ 3-7
COMBUSTION CHAMBER CLEANING 3-8
FUEL FILTER REPLACEMENT ······· 3-9
FUEL TUBE CHECK ······ 3-10

_

MAINTENANCE SCHEDULE

REGULAR : ITEM	SERVICE PERIO Perform at ever operating hour comes first.	OD (2) y indicated month or interval, whichever	Each use	First month or 20 hrs.	Every 6 months or 100 hrs.	Every year or 300 hrs.	Every 2 years or 500 hrs.	Refer to page
Engine oil		Check level	0					3-3
		Change		0	0			3-3
Engine oil fi	lter	Replace		E	Every 200 hours	S		3-4
Air cleaner		Check	0					3-4
		Clean			O (1)			3-4
		Replace					O (*)	3-5
Screen grid		Check	0					5-3
Spark plug		Check-adjust			0			3-5
		Replace				0		3-6
Idle speed		Check–adjust				0		3-6
Valve cleara	ance	Check-adjust				0		3-7
Combustion	i chamber	Clean	After every 1,000 hours				3-8	
Fuel filter		Replace				0		3-9
Fuel tube		Check	Every 2 years (Replace if necessary)				3-10	

(*) Replace inner filter (paper) only.

(1) Service more frequently when used in dusty areas.

(2) For commercial use, log hours of operation to determine proper maintenance intervals.

ENGINE OIL LEVEL CHECK

Place the engine on a level surface.

Start the engine and allow it to warm up for 1 to 2 minutes.

Remove the oil level dipstick [1], and wipe it clean.

Insert the oil level gauge into the oil filler extension [2], but do not screw in.

Remove the oil level dipstick and check the oil level shown on the tip of the oil level dipstick.

If the oil level is near or below the lower level mark [3] on the oil level dipstick, fill with recommended oil to the upper level mark [4] of the oil level dipstick.

Oil is a major factor affecting performance and service life. Use 4-stroke automotive detergent oil.

SAE 5W-30 or 10W-30 is recommended for general use. Use a full synthetic 5W-30 for starting/operating temperatures between $5^{\circ}F$ and $-22^{\circ}F$. Other viscosities shown in the chart may be used when the average temperature in your area is within the recommended range.

RECOMMENDED OIL: SAE 5W-30 or 10W-30 API service classification SJ or later

Install the oil level dipstick securely.

ENGINE OIL CHANGE

Drain the oil in the engine while the engine is warm. Warm oil drains quickly and completely.

Place the engine on a level surface and place a suitable container under the drain plug bolt [1].

Remove the oil level dipstick [2] and the drain plug bolt to drain the oil into a suitable container.

Please dispose of used motor oil in a manner that is compatible with the environment. We suggest you take used oil in a sealed container to your local recycling center or service station for reclamation. Do not throw it in the trash, pour it into the ground, or pour it down a drain.

Used engine oil contains substances that have been identified as carcinogenic. If repeatedly left in contact with the skin for prolonged periods, it may cause skin cancer. Wash your hands thoroughly with soap and water as soon as possible after contact with used engine oil.

Install a new drain plug washer [3] and tighten the drain plug bolt to the specified torque.

TORQUE: 45 N·m (4.5 kg-m, 33 ft-lb)

Fill with recommended oil to the upper level mark of the oil level dipstick.

Install the oil level dipstick securely.

OIL FILTER REPLACEMENT

Drain the engine oil.

Remove the oil filter [1] using the special tool [2].

TOOLS: Oil filter wrench 65 mm [2] 07AAA-PLCA100

Apply a light coat of engine oil to the O-ring [3] of the new oil filter.

Install the new oil filter and tighten to the specified torque.

TORQUE: 12 N·m (1.2 kg-m, 106 in·lb)

Fill with recommended oil to the upper level mark of the oil level dipstick (page 3-3).

AIR CLEANER CHECK / CLEANING

A dirty air filter will restrict airflow to the carburetor, reducing engine performance. If the engine is operated in dusty areas, clean the air cleaner more often than specified in the MAINTENANCE SCHEDULE.

NOTICE

Operating the engine without the air filters or with the filter installed incorrectly will allow dirt to enter the engine, causing rapid engine wear. Install the air filters securely.

Remove the air cleaner cover [1].

Remove the outer filter (Foam) [2] from the element holder [3].

Remove the element holder and inner filter (paper) [4] from the air cleaner case [5]. Carefully check both filters for holes or tears, and replace if damaged.

Clean the outer filter [1] in warm soapy water [2], rinse and allow to dry thoroughly, or clean with a nonflammable solvent [2] and allow to dry thoroughly. Dip the filter in clean engine oil [3] and squeeze out all the excess oil. Excess oil will restrict airflow through the foam element and may cause the engine to smoke at startup.

Tap the inner filter [1] lightly several times on a hard surface to remove excess dirt or blow compressed air lightly (207 kPa (2.11 kgf/cm², 30 psi) or less) through the paper filter from the inside out. Never try to brush the dirt off; brushing will force dirt into the fibers.

Wipe dirt from the inside of the air cleaner case, element holder, and air cleaner cover using a rag.

Install the inner filter to the air cleaner case and element holder.

Install the outer filter on the element holder.

Install the air cleaner cover.

AIR CLEANER REPLACEMENT

Remove the air cleaner cover (page 3-4).

Remove the outer filter, element holder, and inner filter (page 3-4).

Wipe dirt from the inside of the air cleaner case, element holder, and air cleaner cover using a rag.

Install a new air cleaner element and cover (page 3-4).

SPARK PLUG CHECK / ADJUSTMENT

If the engine has been running, the engine will be very hot.

A hot engine can burn you. Allow it to cool before proceeding.

Remove the spark plug cap [1], and then remove the spark plug [2] using a spark plug wrench [3].

Visually check the spark plug. Replace the plug if the insulator [1] is cracked, chipped, or heavily fouled.

Check the sealing washer [2] for damage.

Replace the spark plug if the sealing washer is damaged (page 3-6).

Measure the plug gap with a wire-type feeler gauge. If the measurement is out of the specification, adjust by bending the side electrode.

PLUG GAP: 0.7 ~ 0.8 mm (0.028 ~ 0.031 in)

Install the spark plug finger-tight to seat the washer, and then tighten it to the specified torque.

TORQUE: 18 N·m (1.8 kg-m, 159 in·lb)

NOTICE

A loose spark plug can become very hot and can damage the engine. Overtightening can damage the threads in the cylinder block.

Install the spark plug cap securely.

SPARK PLUG REPLACEMENT

If the engine has been running, the engine will be very hot. A hot engine can burn you.

Allow it to cool before proceeding.

Remove the spark plug cap, and then remove the spark plug using a spark plug wrench (page 3-5).

Verify the new spark plug gap is correct.

Install the spark plug finger-tight to seat the washer, and then tighten it to the specified torque.

SPARK PLUG: ZFR5F (NGK)

TORQUE: 18 N·m (1.8 kg-m, 159 in·lb)

NOTICE

A loose spark plug can become very hot and can damage the engine. Overtightening can damage the threads in the cylinder block.

Install the spark plug cap securely.

IDLE SPEED CHECK / ADJUSTMENT

Start the engine and allow it to warm up to normal operating temperature.

Turn the pan screw [1] of the control to obtain the specified idle speed.

IDLE SPEED: 1,400 ± 150 rpm

VALVE CLEARANCE CHECK / ADJUSTMENT

Remove the four flange bolts [1] and each valve cover [2].

Remove the fan cover protector or screen grid (page 5-2).

Disconnect the spark plug caps [3] from the spark plugs.

Set the piston of the No.1 cylinder at the top dead center of the cylinder compression stroke (both valves fully closed) by rotating the flywheel [1] clockwise slowly. When the No.1 piston is at the top dead center of the compression stroke, the "T" mark [2] on the cooling fan will align with the right side alignment mark [3] on the fan cover.

If the exhaust valve is opened, rotate the flywheel and align the "T" mark on the cooling fan with the alignment mark on the fan cover again.

Insert a thickness gauge between the valve rocker

arm [1] and valve stem [2] to measure the valve

Set the piston of the No.2 cylinder at the top dead center of the cylinder compression stroke (both valves fully closed) by rotating the flywheel [1] 270 degrees clockwise slowly. When the No.2 piston is at the top dead center of the compression stroke, the "T" mark [2] on the cooling fan will align with the left side alignment mark [3] on the fan cover.

Insert a thickness gauge between the valve rocker arm and valve stem to measure the valve clearance.

VALVE CLEARANCE: IN: 0.08 ± 0.02 mm EX: 0.10 ± 0.02 mm

clearance.

VALVE CLEARANCE: IN: 0.08 ± 0.02 mm EX: 0.10 ± 0.02 mm

If adjustment is necessary, proceed as follows.

Hold the tappet adjusting screw [1] and loosen the tappet adjusting nut [2].

TOOL:

Tappet adjusting wrench 3 mm [3] 07908-KE90200

Turn the tappet adjusting screw to obtain the specified clearance.

VALVE CLEARANCE: IN: 0.08 ± 0.02 mm EX: 0.10 ± 0.02 mm

Hold the tappet adjusting screw and retighten the tappet adjusting nut to the specified torque.

TORQUE: 7.5 N·m (0.8 kg-m, 66 in·lb)

Recheck the valve clearance, and if necessary, readjust the clearance.

Check the valve cover packing for damage or deterioration and install it on the valve cover. Attach the cylinder valve cover to the cylinder and tighten the flange bolts securely.

COMBUSTION CHAMBER CLEANING

Remove the cylinder (page 13-2).

Place the cylinder hole protector [1] made from a 1-quart round plastic oil bottle into the cylinder.

CYLINDER HOLE PROTECTOR:

Length: 124 mm (4.9 in) Compression O.D.: 70 mm (3.0 in)

Attach the cleaning brush to an electric drill and clean any carbon deposits from the combustion chamber.

TOOLS:

Cleaning brush (Commercially available)

NOTICE

- Do not remove valves from the cylinder while cleaning the combustion chamber.
- Be sure to insert a cylinder hole protector into the cylinder to protect the inner wall of the cylinder during cleaning of the combustion chamber.
- Do not press the wire brush with force against the combustion chamber.

FUEL FILTER REPLACEMENT

AWARNING

Gasoline is highly flammable and explosive. You can be burned or seriously injured when handling fuel.

- Stop the engine and let it cool.
- Keep heat, sparks, and flame away.
- Handle fuel only outdoors.
- Wipe up spills immediately.

Check the fuel filter [1] for water accumulation or sediment. Replace it if necessary.

Install commercially available tube clamps (HCP6) [1] on the fuel tubes [2] on both sides of the fuel filter [3].

Disconnect the fuel tube from the fuel filter to remove the fuel filter.

Install a new fuel filter with the arrow mark toward the carburetor side.

Check the connecting parts for any sign of fuel leakage.

FUEL TUBE CHECK

Gasoline is highly flammable and explosive. You can be burned or seriously injured when handling fuel.

- Stop the engine and let it cool.
 Keep heat, sparks and flame away.
- Handle fuel only outdoors.
- Wipe up spills immediately. •

Remove the air cleaner case (page 3-4).

Remove the fuel pump cover (page 5-2).

Check the fuel tube [1] for deterioration, cracks or signs of leakage. If necessary, replace it.

Install the fuel pump cover (page 5-2).

Install the air cleaner case (page 3-4).

4. TROUBLESHOOTING

BEFORE TROUBLESHOOTING

- Use a known-good battery for troubleshooting.
- Check that the connectors are connected securely.
- Check for sufficient fresh fuel in the fuel tank.
- Read the circuit tester's operation instructions carefully, and observe the instructions during inspection.
- Disconnect the battery cable before continuity inspection.

ENGINE TROUBLESHOOTING GENERAL SYMPTOMS AND POSSIBLE CAUSES

HARD STARTING

ENGINE DOES NOT STOP WHEN COMBINATION SWITCH IS TURNED OFF

FAN COVER REMOVAL / INSTALLATION · 5-2

LOWER SHROUD REMOVAL / INSTALLATION 5-4

SCREEN GRID / SCREEN GRID COVER TYPE STUD BOLT 12 N·m (1.2 kg-m, 106 in·lb) SPECIAL SCREW (6 x 15 mm) (2) 4.4 N·m (0.45 kg-m, 39 in·lb) FAN COVER TAPPING SCREW (5 x 20 mm) (2) BOLT (6 x 38 mm) (3) 4 N·m (0.4 kg-m, 35 in·lb) 8.5 N·m (0.85 kg-m, 75 in·lb) SCREEN GRID COVER BOLT (6 x 20 mm) (2) NUT (6 mm) (2) 8.5 N·m (0.85 kg-m, 75 in·lb) FUEL PUMP COVER 9 8 Þ ۱P C 6 0 ***** BOLT (8 x 18 mm) (3) SCREW (6 x 16 mm) (3) SCREEN GRID HOLDER UUNN

SCREEN GRID

FUEL TUBE A Clamp fuel tube A to the hook on the fan cover.

LOWER SHROUD REMOVAL / INSTALLATION

Remove the fan cover (page 5-2).

L. LOWER SHROUD

ľ	^	÷
L		Ľ
۰.		۰.

SYSTEM DIAGRAM ····· 6-2
FUEL SYSTEM TROUBLESHOOTING ······ 6-2
AIR CLEANER REMOVAL / INSTALLATION ······ 6-3

FUEL PUMP REMOVAL / INSTALLATION · 6-4	1
CARBURETOR ······6-4	5
CARBURETOR STUD BOLT REPLACEMENT ······ 6-4	•

SYSTEM DIAGRAM

FUEL SYSTEM TROUBLESHOOTING FUEL DOES NOT REACH CARBURETOR

AIR CLEANER REMOVAL / INSTALLATION

FUEL PUMP REMOVAL / INSTALLATION

CARBURETOR

REMOVAL / INSTALLATION

DISASSEMBLY / ASSEMBLY

A WARNING

Gasoline is highly flammable and explosive.

You can be burned or seriously injured when handling fuel.

- Stop the engine and let it cool.
- Keep heat, sparks, and flame away.
- Handle fuel only outdoors.
- · Wipe up spills immediately.

A CAUTION

Using compressed air my cause serious eye injury. Always wear safety goggles or other eye protection when using compressed air.

NOTICE

• Tampering is a violation of federal and California law.

Before disassembly, clean the outside of the carburetor.

PILOT SCREW REMOVAL / INSTALLATION

Remove the fuel pump (page 6-4).

Remove/install the pilot screw [1] using the special tool [2].

TOOL:

PILOT SCREW WRENCH (D) [2] 07MMA-MT3010B

PILOT SCREW OPENING: See page 2-4

CARBURETOR BODY CLEANING

Using compressed air my cause serious eye injury. Always wear safety goggles or other eye protection when using compressed air.

NOTICE

- Some commercially available chemical cleaners are very caustic. These cleaners may damage plastic or parts such as the O-ring, the float and the float seat of the carburetor. Check the container for instructions. If you are in doubt, do not use these products to clean a Honda carburetor.
- High air pressure may damage the carburetor body. Use low air pressure (207 kPa (30 psi) or less) when cleaning passages and ports.

Clean the carburetor body with non-flammable solvent.

Clean thoroughly the following passages and ports with low-pressure compressed air.

- Pilot jet hole [1]
- Main air jet [2]
- Main nozzle holder [3]
- Pilot air jet [4]
- Bypass ports [5]
- Pilot outlet ports [6]
- Internal vent port [7]

CARBURETOR INSPECTION

FLOAT LEVEL HEIGHT

Place the carburetor [1] in the position as shown and measure the distance between the float [2] top and carburetor body when the float just contacts the seat without compressing the valve spring.

TOOL:

Float level gauge [3] 07401-0010001

FLOAT HEIGHT: 15.5 mm (0.61 in)

If the measured float height is out of specification, check the float valve and the float valve spring (see below). If the float valve and the float valve spring are normal, replace the float.

FLOAT VALVE

Check for a worn float valve [1].

Check the float valve and valve seat [2] for contamination.

Check for a worn or a weak spring [3].

After installation, check the operation of the float valve.

FUEL CUT SOLENOID

Remove the air cleaner (page 6-3).

Disconnect the wire harness [1] from the fuel cut solenoid [2].

Measure the resistance between the terminal of the fuel cut solenoid and carburetor body.

Resistance: $35 \sim 41 \Omega$

If the measurement resistance is not within the range specification, replace the fuel cut solenoid (page 6-6).

If the solenoid is removed, apply 12V battery voltage to the terminal and valve body [3]. The plunger should retract.

If the fuel cut solenoid does not operate, replace the fuel cut solenoid (page 6-6).

CARBURETOR STUD BOLT REPLACEMENT

Thread two nuts onto the stud bolt [1] and tighten them together, and then use a wrench to turn the stud bolt out.

Screw the stud bolt until it seats in the manifold [2].

NOTES

7. GOVERNOR SYSTEM

GOVERNOR ARM / CONTROL REMOVAL/INSTALLATION

Remove the air cleaner (page 6-3).

GOVERNOR ROD/THROTTLE RETURN SPRING

GOVERNOR ARM INSTALLATION

Install the governor arm [1] on the governor arm shaft [2] by aligning the cutout.

Tighten the governor arm nut [3].

TORQUE: 11 N·m (1.1 kg-m, 97 in·lb)

Connect the governor rod [4] and throttle return spring [5] to the governor arm and carburetor.

Loosen the governor sub arm nut [6].

Rotate the governor arm counterclockwise to fully open the carburetor throttle valve.

Rotate the governor sub arm [7] counterclockwise as far as it will go.

Hold the governor arm and governor sub arm, and then tighten the governor sub arm nut securely.

GOVERNOR SPRING INSTALLATION

Hook the governor spring [1] to the throttle lever [2] of the control.

Refer to the table below to confirm the governor spring position on the governor arm [3].

NOTE:

• The engine type is stamped on the crankcase near the engine serial number (page 1-2).

Model	Туре	Spring position
CYCODU	TAF, QAF, QYF, TAF2	2
GAUSUKIT	QYS1, QYST, QAMT	3
CYEOOPH	TAF, TAF2, TAF3	2
GAUSUKIT	QYS1	3

MAXIMUM SPEED ADJUSTMENT

Start the engine and allow it to warm up to normal operating temperature.

Turn the pan screw [1] of the control to obtain the specified maximum speed.

TYPES:

GX630RH QYS1 QYST QAMT TAF, QAF, QYF, TAF2

2,900 +0/-200 rpm 3,200 ± 100 rpm 3,400 +0/-100 rpm 3,600 ± 150 rpm

MAXIMUM SPEED:

GX690RH QYS1 TAF, TAF2, TAF3

2,900 +0/-200 rpm 3,600 ± 150 rpm

SYSTEM DIAGRAM ······8	-2
CHARGING SYSTEM TROUBLESHOOTING ······8	-3

COOLING FAN/FLYWHEEL ······8-4
CHARGE COIL······8-8
REGULATOR/RECTIFIER ······ 8-9

SYSTEM DIAGRAM 17 A CHARGE COIL TYPE

26 A CHARGE COIL TYPE

CHARGING SYSTEM TROUBLESHOOTING BATTERY DAMAGED OR WEAK

Check for continuity between the LO terminal (Black/yellow) and the BAT terminal (white) of the combination switch in the ON position.	No continuity	► Replace the combination switch.
Continuity		
Check for continuity of the sub harness between combination switch and regulator/ rectifier (black/vellow) (17.4 charge coil type)	No continuity	► Replace the sub harness.
Continuity	No good	
Check the charge coil (page 8-8).	5	► Replace the charge coil (page 8-8).
Check the regulator/rectifier system (page 8-9).	No good	Replace the wire harness connecting the regulator/rectifier and combination switch/ charge coil.
Good		
Check the regulator rectifier (page 8-9). If necessary replace it.		

COOLING FAN/FLYWHEEL

REMOVAL

Remove the ignition coil (page 9-3).

Attach the special tools to the flywheel.

TOOL: Flywheel puller

070PC-ZDW0100

Install the stud bolts [1], collars [2], and socket [3].

Install the holder plate [1], nuts [2], and extension bar [3].

INSTALLATION

Clean the tapered part of the crankshaft [1] and flywheel [2] of dirt, oil, grease and other foreign material before installation. Be sure there are no metal parts or other foreign material on the magnet part of the flywheel.

Set the special woodruff key in the key groove of the crankshaft securely.

Install the flywheel on the crankshaft.

NOTICE

The flywheel may push the key out of its slot; check after installation.

Attach the cooling fan [3] by aligning the holes [4] with projections [5] as shown.

Attach the cooling fan setting plate [1] to the cooling fan [2] by aligning the tabs of the cooling fan setting plate with the projections of the cooling fan.

Rotate the cooling fan setting plate clockwise to touch the claw of the cooling fan setting plate with projections of the cooling fan.

Apply engine oil to the threads and seating surface of the special nut [3] and install it.

Attach the special tools to the flywheel [1].

TOOL: Flywheel puller

070PC-ZDW0100

Install the stud bolts [2], collars [3], and socket [4].

Hold the flywheel [1] with special tools, and tighten the special nut [2] to the specified torque.

Install the holder plate [1], nuts [2], and extension bar

[3].

TORQUE: 245 N·m (25 kg-m, 181 ft-lb)

INSPECTION

Disconnect the charge coil connector/s.

Measure the resistance between the terminals of the charge coil.

Resistance:

 $\begin{array}{rrr} 17 \mbox{ A:} & 0.18 \sim 0.28 \ \Omega \\ 26 \mbox{ A:} & 0.17 \sim 0.25 \ \Omega \end{array}$

Check for continuity between each terminal and engine ground.

There should be no continuity.

If the measured resistance is not within the range specification or if any wire has continuity to engine ground, replace the charge coil (page 8-8).

REGULATOR/RECTIFIER

SYSTEM INSPECTION

Disconnect the regulator/rectifier connector [1] and check the regulator/rectifier connector terminals (wire harness side) as follows:

Item	Terminal	Specification
Battery charging	White (+)	Battery voltage should
line	and ground	register
Chargo coil lino	Gray and	17 A: 0.18 ~ 0.28 Ω
Charge con line	ground	26 A: 0.17 ~ 0.25 Ω
Ground line	Black and	Continuity should exist
Ground line	ground	

INSPECTION

Disconnect the regulator/rectifier connector(s).

Measure the resistance between the terminals and be sure that the measurements are within the specifications in the table below.

Use a commercially available multimeter (FLU88) to perform the following tests in the table below. Select a range that is equal to or higher than the range specified in the table.

17	A:			Unit: Ω
		(+) probe		
		ACG1	ACG2	BAT
	ACG1	-	∞	290 ~ 22k
e	ACG2	8	-	290 ~ 22k
Б	BAT	8	∞	-
d (SENSE	80k ~ ∞	80k ~ ∞	120k ~ ∞
Ţ	CHG.M	150k ~ ∞	150k ~ ∞	300k ~ ∞
	GND	8	∞	∞

			(+) probe	
		SENSE	CHG.M	GND
	ACG1	∞	∞	∞
e	ACG2	∞	∞	∞
12	BAT	∞	∞	∞
d (SENSE	-	2k ~ 150k	8k ~ 150k
1	CHG.M	300 ~ 30k	-	20k ~ 300k
	GND	∞	∞	_

pecified BAT Unit: Ω AT $\sim 22k$ $\sim 26 \text{ A TYPE:}$ $\sim 300k$ $\sim 300k$ $\sim 300k$ $\sim 300k$ $\sim 300k$ $\sim 420k$ $\sim 420k$ $\sim 420k$

GND

17 A TYPE:

SENSE

26	A:			Unit: Ω
			(+) probe	
		ACG1	ACG2	ACG3
	ACG1	-	30k ~ 420k	30k ~ 420k
e	ACG2	30k ~ 420k	-	30k ~ 420k
5	ACG3	30k ~ 420k	30k ~ 420k	-
d (BAT	30k ~ 420k	30k ~ 420k	30k ~ 420k
1	LAMP	∞	∞	∞
	GND	30k ~ 950k	30k ~ 950k	30k ~ 950k

		(+) probe			
		BAT	LAMP	GND	
	ACG1	∞	∞	∞	
e	ACG2	∞	∞	∞	
5 D	ACG3	∞	∞	∞	
d (BAT	—	30k ~ 340k	15k ~ 190k	
1	LAMP	∞	-	∞	
	GND	400 ~ 25k	30k ~ 420k	-	

SYSTEM DIAGRAM ·····9-	2
IGNITION SYSTEM TROUBLESHOOTING9-	2

IGNITION COIL ······9-3
IGNITION COIL INSPECTION ······· 9-5
SPARK PLUG CAP INSPECTION ········· 9-5

SYSTEM DIAGRAM

IGNITION SYSTEM TROUBLESHOOTING NO SPARK AT SPARK PLUG

IGNITION COIL

REMOVAL

Remove the following parts:

- Fan cover (page 5-2).L./R. lower shrouds (page 5-4).

HIGH TENSION CORD CLAMP
IGNITION SYSTEM

INSTALLATION

Install the ignition coil [1] and loosely tighten the two flange bolts [2].

Insert the thickness gauge [3] of proper thickness between the ignition coil and the flywheel [4].

IGNITION COIL AIR GAP: 0.2 ~ 0.6 mm (0.01 ~ 0.02 in)

NOTICE

Adjust the ignition coil air gap equally on both side.

Push the ignition coil firmly against the flywheel and tighten the flange bolts.

Remove the thickness gauge.

IGNITION COIL INSPECTION

Remove the following:

- Fan cover (page 5-2)L./R. lower shroud (page 5-4)

Remove the spark plug cap (1).

Disconnect the ignition coil 4P connector (2).

Measure the resistance between the terminals, and be sure that the measurements are within the specifications in the table below.

Use a commercially available multimeter (FLU88) to perform the following tests in the table below. Select a range that is equal to or higher than the range specified in the table.

Unit: kΩ

			(+) Probe					
				SPARK	Terminal nui	nber		
			GND	PLUG	2	1	4	3
				CAP	EXT	IGN	LED	OIL ALT
	GND SPARK PLUG CAP		-	9.3~21.7	7.1 ~ 16.7	6.3 ~ 14.7	11.4 ~ 26.6	7.2 ~ 16.8
			9.3 ~ 21.7	-	∞	∞	∞	∞
(-) Probe								
	Terminal number	2	\sim	\sim		\sim	\sim	\sim
		EXT	ω	\mathcal{C}	_	ω	ω	\mathcal{C}
		1	\sim	\sim	\sim	_	\sim	\sim
		IGN	ω	ω	ω		ω	ω
		4	\sim	\sim	\sim	\sim	_	\sim
		LED	ω	ω	ω	ω		ω
		3						
		OIL	∞	\sim	∞	∞	\sim	-
		ALT				~~~	~~~	

SPARK TEST

Inspect the following before performing the spark test.

- Faulty spark plug
- Loose spark plug cap
- Water in the spark plug cap (Leaking ignition coil secondary voltage)
- · Check the ignition coil connection

Disconnect the spark plug cap [1] from the spark plug.

Connect a known-good spark plug [2] to the spark plug cap and ground the spark plug to the head cover bolt [3].

Crank the engine by operating the starter motor several seconds and check whether sparks jump across the electrode.

NOTICE

Do not operate the starter motor for more than 5 seconds at a time. When operating the starter motor several times in a row, wait $10 \sim 20$ seconds between operation to recover the battery voltage and to allow the starter motor to cool.

SPARK PLUG CAP INSPECTION

Remove the spark plug cap from the high-tension cord.

Attach the tester probes to the spark plug cap as shown and measure the resistance.

Resistance:

7.5 ~ 12.5 kΩ

Replace the spark plug cap if the resistance is out of specification.

SYSTEM DIAGRAM ······ 10-2

STARTER MOTOR 10-3

STARTING SYSTEM TROUBLESHOOTING 10-2 6

SYSTEM DIAGRAM

STARTING SYSTEM TROUBLESHOOTING

STARTER MOTOR DOES NOT OPERATE

STARTER MOTOR

REMOVAL/INSTALLATION

Disconnect the starter motor wires from the starter motor.

BOLT (10 x 40 mm) (2)

DISASSEMBLY

ASSEMBLY

Attach the pinion drive lever [1] to the magnetic switch [2]. Set the pinion drive lever to the overrunning clutch [3] of the armature.

Install the magnetic switch and armature to the drive housing [4] and tighten the flange nuts to secure the magnetic switch.

Install the yoke [5] to the drive housing.

Install the brush holder [6] to the yoke, and set the brushes [7] and brush springs [8] to the brush holder.

Install the brush holder insulator [9].

Install the commutator end frame [10] by aligning the brush terminal grommet [11] with the cutout of the commutator end frame.

Tighten the through bolts to secure the drive housing and commutator end frame.

INSPECTION

PERFORMANCE TEST

Measure starter performance while cranking the engine.

STARTER MOTOR PERFORM	ANCE:
UNDER LOAD:	
CRANKING VOLTAGE:	9 V
CRANKING CURRENT:	150 A
ENGINE CRANKING SPEED:	195 rpm
NO LOAD:	-
CRANKING VOLTAGE:	11.5 V
CRANKING CURRENT:	50 A maximum

- To get accurate results, the test must be performed in the normal ambient temperature.
- Battery: 55B24 (12 V 36 AH/5 HR)
- Battery cable: 15 sq x 1.5 m (4.9 ft) each for battery positive cable and battery negative cable.

If the measurement is out of specification, disassemble and inspect the starter motor.

STARTING SYSTEM

MAGNETIC SWITCH

Check the continuity between the terminals of the magnetic switch.

There should be no continuity between the terminals.

If there is continuity, replace the magnetic switch (page 10-4).

BRUSH LENGTH

Measure the brush length.

STANDARD: 10 mm (0.4 in) SERVICE LIMIT: 6 mm (0.2 in)

If the brush length is less than the service limit, replace the brush (page 10-4).

BRUSH CONTINUITY CHECK

Check for continuity between the positive (+) brushes [1] and negative (-) brushes [2].

There should be continuity between the two positive brushes.

There should be continuity between the two negative brushes.

There should be no continuity between the positive and negative brushes.

If the correct continuity is not obtained, replace the yoke (page 10-4).

OVERRUNNING CLUTCH

Hold the armature [1] as shown and check that the overrunning clutch [2] turns clockwise and slides smoothly. If necessary, apply oil or replace the overrunning clutch (page 10-4).

Check the pinion gear [3] for wear or damage and replace the overrunning clutch if necessary (page 10-4).

If the pinion gear is worn or damaged, the flywheel ring gear must be inspected.

MICA DEPTH

Clean the commutator, and then measure the mica depth.

SERVICE LIMIT: 0.2 mm (0.01 in)

If the measurement is less than the service limit, replace the armature (page 10-4).

ARMATURE CONTINUITY CHECK - COMMUTATOR SEGMENTS

Check for continuity between the segments. If an open circuit (no continuity) exists between any two segments, replace the armature (page 10-4).

STARTING SYSTEM

ARMATURE CONTINUITY CHECK - COMMUTATOR TO CORE

Check for continuity between the commutator segments and the armature coil core.

Replace the armature if continuity exists between any of the commutator segments and the armature coil core (page 10-4).

ARMATURE CONTINUITY CHECK - COMMUTATOR TO SHAFT

Check for continuity between the commutator and the armature shaft.

Replace the armature if continuity exists between any of the commutator segments and the armature shaft (page 10-4).

BRUSH REPLACEMENT

Cut off the brush lead [1] at the point shown and remove the brush [2].

Remove the remaining brush lead and deposited solder from the terminal.

Hold a new brush [1] in the same direction of the removed brush and put a new plate [2] over the new brush and terminal [3] and press it using a pair of pliers as shown.

STARTING SYSTEM

Solder the plate on the terminal.

- Before soldering, heat the pressed part of the plate well to make sure solder reaches the end of the pressed part.
- •
- Prevent solder from flowing down the brush lead. Do not allow solder to run down onto the field ٠ winding of the yoke.
- File the brush so that the brush and commutator can fit using an emery paper #500 or #600.

NOTES

11. OTHER ELECTRICAL

COMPONENT LOCATION 11-2

OIL PRESSURE SWITCH INSPECTION ···· 11-2

11

COMPONENT LOCATION

OIL PRESSURE SWITCH INSPECTION

With the combination switch OFF, check continuity between the switch terminal and switch body.

There should be continuity.

Start the engine, and then check continuity between the switch terminal and switch body.

There should be no continuity.

If the correct continuity is not obtained, replace the oil pressure switch (page 12-3).

12. LUBRICATION SYSTEM

LUBRICATION SYSTEM DIAGRAM 12-2

OIL PRESSURE TEST 12-3

OIL PUMP INSPECTION 12-4

12

LUBRICATION SYSTEM DIAGRAM

OIL PRESSURE TEST

Check the engine oil level (page 3-3).

Remove the oil pressure switch [1] or sealing plug [2].

Install the tools.

TOOLS (Commercially available): Engine oil pressure gauge kit [1] Adapter - 1/8 x 28 BSPT [2]

EEPV303A AT77AH

TORQUE: 9 N·m (0.9 kg-m, 80 in·lb)

NOTICE

Tighten the oil pressure gauge attachment to the specified torque. Do not overtighten the attachment to avoid damaging the crankcase threads.

Start the engine and allow it to warm up for 10 minutes.

While the engine is at idle, measure the oil pressure.

OIL PRESSURE: 39.8 psi (2.8 kgf/cm²) @ 2,000 rpm

If the oil pressure is less than the specification, inspect the oil pump (page 12-4).

Remove the tools.

Clean the oil pressure switch or sealing bolt threads, and apply liquid sealant (ThreeBond[®] 1207B, 1141G, 1215, Hondabond HT, Hondabond 4 or equivalent) to the threads as shown.

Tighten the oil pressure switch or sealing bolt to the specified torque.

TORQUE: 9 N·m (0.9 kg-m, 80 in·lb)

NOTICE

Do not apply liquid sealant to the tip of the threads.

Tighten the oil pressure switch or sealing bolt to the specified torque. Do not overtighten the attachment to avoid damaging the crankcase threads.

OIL PUMP INSPECTION

OIL PUMP TIP CLEARANCE

Remove the oil pan (page 14-2).

Remove the oil pump cover (page 14-8).

Measure the oil pump rotor tip clearance.

 STANDARD:
 0.15 mm (0.006 in)

 SERVICE LIMIT:
 0.30 mm (0.012 in)

If the measurement is more than the service limit, replace the inner rotor and outer rotor (page 14-8).

OUTER ROTOR-TO-HOUSING CLEARANCE

Remove the oil pan (page 14-2).

Remove the oil pump cover (page 14-8).

Measure the oil pump outer rotor-to-housing clearance.

STANDARD: 0.150 ~ 0.210 mm (0.0059 ~ 0.0083 in) SERVICE LIMIT: 0.30 mm (0.012 in)

If the measurement is more than the service limit, replace the outer rotor (page 14-8).

OUTER ROTOR-TO-PUMP COVER CLEARANCE

Remove the oil pan (page 14-2).

Remove the oil pump cover (page 14-8).

Remove the oil pump O-ring (page 14-8).

Measure the oil pump outer rotor-to-pump cover clearance.

 STANDARD:
 0.04 ~ 0.09 mm (0.002 ~ 0.004 in)

 SERVICE LIMIT:
 0.11 mm (0.004 in)

If the measurement is more than the service limit, replace the outer rotor (page 14-8).

CYLINDER/PISTON ····· 13-2

VALVE SEAT RECONDITIONING13-14

CYLINDER/PISTON

REMOVAL

Set the piston at the top dead center of the cylinder compression stroke (page 3-7).

Remove the following parts:

- Air cleaner (page 6-3)Carburetor (page 6-5)
- Intake manifold (page 6-5)
- Control and governor arm (page 7-2)
- Fan cover (page 5-2)
- L./R. lower shrouds (page 5-4)
 Ignition coils (page 9-3)
 Starter motor (page 10-3)

- Valve covers (page 3-7)

CYLINDER

PISTON INSTALLATION

Position the connecting rod of the cylinder near top dead center by rotating the crankshaft slowly.

Install the piston [1] on the connecting rod [2] with triangle mark [3] on the piston pointing toward the flywheel side as shown.

Apply oil to the piston pin [4] outer surface, connecting rod small end and piston pin bore.

Install the piston pin through the piston and connecting rod.

Install new piston pin clips [5] into the grooves in the piston pin hole.

NOTE:

- Make sure the piston pin clips are seated securely.
- Do not align the piston pin clip end gap [6] with the piston cutout [7].

CYLINDER INSTALLATION

Clean the mating surfaces of the cylinder and crankcase of old liquid gasket, oil and other foreign material.

Loosely install the fan cover and set the piston near top dead center by rotating the crankshaft slowly (page 3-7).

Apply $1.0 \sim 1.5 \text{ mm} (0.04 \sim 0.06 \text{ in})$ diameter of liquid gasket (ThreeBond[®] TB1207B) to the mating surface of the cylinder as shown.

NOTE:

• Spread enough sealant especially on the bold line area to secure the seal.

CYLINDER

Apply grease to the oil passage packing [1].

Install the dowel pins [2] and oil passage packing on the crankcase.

Apply oil to the cylinder inner surface, piston outer surface, and piston rings.

Install the cylinder [3] over the piston [4] while compressing the piston rings with your fingers.

Apply a light coat of oil to the threads and the seating surface of the four flange nuts [5] and tighten them to the specified torque.

TORQUE: 37 N·m (3.8 kg-m, 27 ft-lb)

NOTE:

- Assemble the cylinder within 3 minutes after applying liquid gasket.
- Wait for 30 minutes after assembly before filling with oil and starting the engine.

Apply oil to both ends of the two push rods [6] and insert them into the cylinder.

Apply oil to the bearing and slipper of the rocker arms [1] and install them to the cylinder.

Apply oil to the rocker arm shafts [2] and insert them into the cylinder in the direction as shown.

Install the head cover (page 3-7).

CYLINDER DISASSEMBLY/ASSEMBLY

Remove the cylinder (page 13-2).

PISTON DISASSEMBLY/ASSEMBLY

Remove the piston (page 13-2).

INSPECTION

CYLINDER COMPRESSION CHECK

Start the engine and warm up to normal operating temperature.

Remove the spark plug (page 3-6).

Operate the starter motor to expel unburned gas.

Attach a compression gauge [1] to the spark plug hole.

TOOLS (Commercially available):Compression gauge [1]SUNEEPV303A

Operate the starter motor until the reading stabilizes, but no more than seconds.

NOTICE

Do not operate the starter motor for more than 5 seconds at a time. When operating the starter motor several times in a row, wait $10 \sim 20$ seconds between operation to recover the battery voltage and to allow the starter motor to cool.

CYLINDER COMPRESSION:

0.5 ~ 0.7 MPa (73 ~ 102 psi)/500 rpm

CYLINDER SLEEVE I.D.

Measure and record the cylinder I.D. at three levels in both the "X" axis (perpendicular to crankshaft) and the "Y" axis (parallel to crankshaft). Take the maximum reading to determine cylinder wear and taper.

STANDARD:

78.000 ~ 78.015 mm (3.0709 ~ 3.0715 in) SERVICE LIMIT: 78.150 mm (3.0768 in)

If the measurement is more than the service limit, replace the cylinder (page 13-5).

VALVE SEAT WIDTH

Remove the carbon deposits from the combustion chamber (page 3-8).

Inspect each valve face for irregularities.

If necessary, replace the valve (page 13-5).

Apply a light coat of Prussian Blue or erasable felttipped marker ink to each valve seat.

Using a valve lapper, insert the valve, and snap it closed against its seat several times. Be sure the valve does not rotate on the seat. The transferred marking compound will show any area of the valve face that is not concentric.

TOOL (Commercially available): Valve lapper [1] LIL21100

Measure the valve seat width of the cylinder.

STANDARD: 1.0 ~ 1.2 mm (0.04 ~ 0.05 in) SERVICE LIMIT: 2.1 mm (0.08 in)

If the measurement is more than the service limit, recondition the valve seat (page 13-14).

Check whether the valve seat contact area of the valve is too high.

If the valve seat is too high, recondition the valve seat (page 13-14).

VALVE GUIDE I.D.

Ream the valve guide [1] to remove any carbon deposits before measuring.

TOOL:

Valve guide reamer 5.5 mm [2] 07984-20000D

NOTICE

Turn the special tool (valve guide reamer) clockwise, never counterclockwise.

Continue to rotate the special tool while removing it from the valve quide.

CYLINDER

Measure and record each valve guide I.D.

STANDARD:	5.500 ~ 5.512 mm	
	(0.2165 ~ 0.2170 in)	
SERVICE LIMIT:	5.560 mm (0.2189 in)	

If the measured valve guide I.D. is more than the service limit, replace the cylinder (page 13-5).

VALVE STEM O.D.

Inspect each valve for bending or abnormal stem wear.

If necessary, replace the valve (page 13-5).

Measure and record each valve stem O.D.

STANDARD:

IN: 5.475 ~ 5.490 mm (0.2156 ~ 0.2161 in) EX: 5.435 ~ 5.450 mm (0.2140 ~ 0.2146 in) SERVICE LIMIT: IN: 5.400 mm (0.2126 in) EX: 5.300 mm (0.2087 in)

If the measurement is less than the service limit, replace the valve (page 13-5).

GUIDE-TO-STEM CLEARANCE

Subtract each valve stem O.D. from the corresponding valve guide I.D. to obtain the stem-to-guide clearance.

STANDARD:

IN: 0.010 ~ 0.037 mm (0.0004 ~ 0.0015 in) EX: 0.050 ~ 0.077 mm (0.0020 ~ 0.0030 in) SERVICE LIMIT: IN: 0.110 mm (0.0043 in) EX: 0.130 mm (0.0051 in)

If the calculated clearance is more than the service limit, replace the following:

Valve (page 13-5)Cylinder (page 13-5)

VALVE SPRING FREE LENGTH

Measure the valve spring free length.

STANDARD:	38.3 mm (1.51 in
SERVICE LIMIT:	36.8 mm (1.45 in

If the measured length is less than the service limit, replace the valve spring (page 13-5).

VALVE SPRING PERPENDICULARITY

Measure the valve spring perpendicularity.

STANDARD: 2° max.

If the measured perpendicularity is more than the specification, replace the valve spring (page 13-5).

PUSH ROD RUNOUT

Check both ends of the push rod for wear. Check the push rod for straightness. If necessary, replace the push rod (page 13-2).

ROCKER ARM I.D.

Measure the rocker arm I.D.

STANDARD:	6.000 ~ 6.018 mm
	(0.050 ~ 0.077 in)
SERVICE LIMIT:	6.043 mm (0.2379 in)

If the measurement is more than the service limit, replace the rocker arm (page 13-2).

ROCKER ARM SHAFT O.D.

Measure the rocker arm shaft O.D.

STANDARD:	5.960 ~ 5.990 mm
	(0.2346 ~ 0.2358 in)
SERVICE LIMIT:	5.953 mm (0.2344 in)

If the measurement is less than the service limit, replace the rocker arm shaft (page 13-2).

ROCKER ARM SHAFT BEARING I.D.

Measure the rocker arm shaft bearing I.D.

STANDARD:	6.000 ~ 6.018 mm
	(0.050 ~ 0.077 in)
SERVICE LIMIT:	6.043 mm (0.2379 in)

If the measurement is more than the service limit, replace the cylinder (page 13-5).

PISTON SKIRT O.D.

Measure and record the piston O.D. at a point 10 mm (0.4 in) from the bottom of the skirt and 90 degrees to the piston pin bore.

STANDARD:	77.975 ~ 77.985 mm
	(3.0699 ~ 3.0703 in)
SERVICE LIMIT:	77.875 mm (3.0660 in)

If the measurement is less than the service limit, replace the piston (page 13-6).

PISTON-TO-CYLINDER CLEARANCE

Subtract the piston skirt O.D. from the cylinder sleeve I.D. to obtain the piston-to-cylinder clearance.

STANDARD:	0.015 ~ 0.040 mm
	(0.0006 ~ 0.0016 in)
SERVICE LIMIT:	0.12 mm (0.005 in)

If the calculated clearance is more than the service limit, replace the piston (page 13-6) and recheck the clearance.

If the clearance is still more than the service limit with the new piston, replace the cylinder (page 13-5).

PISTON PIN BORE I.D.

Measure and record the piston pin bore I.D. of the piston.

18.002 ~ 18.008 mm

STANDARD:

(0.7087 ~ 0.7090 in) SERVICE LIMIT: 18.042 mm (0.7103 in)

If the measurement is more than the service limit, replace the piston (page 13-6).

PISTON PIN O.D.

Measure and record the piston pin O.D. at three points (both ends and middle). Take the minimum reading to determine piston pin O.D.

STANDARD:	17.994 ~ 18.000 mm
	(0.7084 ~ 0.7087 in)
SERVICE LIMIT:	17.95 mm (0.707 in)

If the measurement is less than the service limit, replace the piston pin (page 13-2).

PISTON PIN-TO-PISTON PIN BORE CLEARANCE

Subtract the piston pin O.D. from the piston pin bore I.D. to obtain the piston pin-to-piston pin bore clearance.

STANDARD:	0.002 ~ 0.014 mm
	(0.0001 ~ 0.0006 in)
SERVICE LIMIT:	0.08 mm (0.003 in)

If the calculated clearance is more than the service limit, replace the piston pin (page 13-2) and recheck the clearance.

If the clearance is still more than the service limit with the new piston pin, replace the piston (page 13-6).

CYLINDER

PISTON RING SIDE CLEARANCE

Measure the clearance between each piston ring and ring groove of the piston using feeler gauge.

STANDARD:

```
Top: 0.050 ~ 0.080 mm (0.0020 ~ 0.0031 in)
Second: 0.050 ~ 0.080 mm (0.0020 ~ 0.0031 in)
SERVICE LIMIT:
```

 Top:
 0.15 mm (0.06 in)

 Second:
 0.15 mm (0.06 in)

If any of the measurements is more than the service limit, inspect the piston ring width. If necessary, replace the piston rings (top, second, oil) as a set (page 13-6) and reinspect the clearance.

If any of the measurements is still more than the service limit with the new piston rings, replace the piston (page 13-6).

If the piston ring width is normal, replace the piston (page 13-6) and reinspect the clearance.

If necessary, replace the piston rings (top, second, oil) as a set (page 13-6) and reinspect the clearance.

PISTON RING WIDTH

Measure each piston ring width.

STANDARD:

```
        Top:
        1.140 ~ 1.155 mm (0.0449 ~ 0.0455 in)

        Second:
        1.140 ~ 1.155 mm (0.0449 ~ 0.0455 in)

        SERVICE LIMIT:
        1.120 mm (0.0441 in)
```

Second: 1.120 mm (0.0441 in)

If any of the measurements is less than the service limit, replace the piston rings (top, second, oil) as a set (page 13-6).

PISTON RING END GAP

Before inspection, check whether the cylinder sleeve I.D. is within the specification.

Set the piston ring into the cylinder sleeve using the piston head.

Measure each piston ring end gap using a feeler gauge.

STANDARD:

 Top:
 0.200 ~ 0.350 mm (0.0079 ~ 0.0138 in)

 Second:
 0.350 ~ 0.500 mm (0.0138 ~ 0.0197 in)

 Oil (side rail):
 0.20 ~ 0.70 mm (0.008 ~ 0.028 in)

 SERVICE LIMIT:
 Top:
 0.450 mm (0.0177 in)

 Second:
 0.600 mm (0.0236 in)
 Oil (side rail):

If any of the measurements is more than the service limit, replace the piston rings (top, second, oil) as a set (page 13-6).

CONNECTING ROD SMALL END I.D.

Measure the connecting rod small end I.D.

STANDARD:	18.006 ~ 18.018 mm
	(0.7089 ~ 0.7094 in)
SERVICE LIMIT:	18.07 mm (0.711 in)

If the measurement is more than the service limit, replace the connecting rod (page 14-4).

VALVE SEAT RECONDITIONING

Valve seat cutters/grinders or equivalent valve seat refacing equipment are recommended to correct worn valve seats.

Place the cylinder hole protector made from a 1-quart round plastic oil bottle into the cylinder (page 3-7).

Using a 45° cutter, remove enough material to produce a smooth and concentric seat.

TOOLS (commercially available):Intake: Cutter, 30x45 degree 128 (1)NWYCU128Exhaust: Cutter, 45 degree 122 (1)NWYCU122Solid pilot 5.5 mm (2)NWY100-5.5MMT-handle (3)NWYTW505Adapter (3)NWYTW501Extension, 6" (3)NWYTW5036H

Turn the cutter clockwise, never counterclockwise. Continue to turn the cutter as you lift it from the valve seat.

Use the 31° and 60° cutters to adjust the valve seat so that it contacts the middle of the valve face.

The 31° cutter removes material from the top edge.

TOOLS (commercially available):Intake: Cutter, 30x45 degree 128 (1)NWYCU128Exhaust: Cutter, 31 degree 115 (1)NWYCU115Solid pilot 5.5 mm (2)NWY100-5.5MMT-handle (3)NWYTW505Adapter (3)NWYTW501Extension, 6" (3)NWYTW5036H

The 60° cutter removes material from the bottom edge.

TOOLS (commercially available):Cutter, 60 degree 111 (1)NWYCU111Solid pilot 5.5 mm (2)NWY100-5.5MMT-handle (3)NWYTW505Adapter (3)NWYTW501Extension, 6" (3)NWYTW5036H

Be sure that the width of the finished valve seat is within specification.

Make a light pass with 45° cutter to remove any possible burrs at the edge of the seat.

TOOLS (commercially available):

Exhaust: Cutter, 45 degree 122 (1)	NWYCU122
Solid pilot 5.5 mm (2)	NWY100-5.5MM
T-handle (3)	NWYTW505
Adapter (3)	NWYTW501
Extension, 6" (3)	NWYTW5036H

After resurfacing the seats, inspect for even valve seating.

Apply Prussian Blue compound or erasable felt-tipped marker ink to the valve seat. Insert the valve, and snap it closed against its seat several times. Be sure the valve does not rotate on the seat.

The seating surface, as shown by the transferred marking compound, should have good contact all the way around.

Thoroughly clean the cylinder to remove any cutting residual.

CYLINDER

Lap the valves into their seats, using a commercially available valve lapper (1) and lapping compound.

TOOL (Commercially available): Valve lapper (1) LIL21100

After lapping, wash all residual compound off the cylinder and valve.

NOTICE

To avoid severe engine damage, be sure to remove all lapping compound from the engine before reassembly.

Adjust the valve clearance after reassembly (page 3-7).

CYLINDER STUD BOLT REPLACEMENT

Thread two nuts onto the stud bolt and tighten them together, and then use a wrench to turn the stud bolt out.

Screw the stud bolt to its incomplete thread [3].

SPECIFIED LENGTH:

Upper side [1]:	40 mm (1.6 in)
Lower side [2]:	30 mm (1.2 in)

NOTES

OIL PAN 14-2
CRANKSHAFT/CONNECTING ROD/ CAMSHAFT/VALVE LIFTER ······· 14-4
BREATHER ····· 14-6
GOVERNOR/OIL PUMP/OIL FILTER DISASSEMBLY/ASSEMBLY······ 14-8
VALVE LIFTER DISASSEMBLY/ ASSEMBLY ······· 14-9

OIL PAN/CRANKCASE/CRANKSHAFT/ CONNECTING ROD/CAMSHAFT/VALVE LIFTER INSPECTION
CRANKSHAFT OIL SEAL REPLACEMENT (OIL PAN SIDE)······14-15
CRANKSHAFT/GOVERNOR ARM SHAFT OIL SEAL REPLACEMENT (CRANKCASE SIDE)······14-16
OIL PAN

REMOVAL

Drain the engine oil (page 3-3).

INSTALLATION

Clean the mating surfaces of the oil pan and crankcase of old liquid gasket, oil and other foreign material.

Apply 1.0 ~ 1.5 mm (0.04 ~ 0.06 in) diameter of liquid gasket (ThreeBond[®] TB1207B) to the mating surface of the oil pan as shown.

Apply grease to the O-ring [1].

Install the two dowel pins [2] and O-ring to the crankcase.

Apply a light coat of oil to the main journal part of the crankshaft and oil pan [3].

Install the oil pan and tighten the nine flange bolts [4] securely.

NOTE:

- Assemble the oil pan within 3 minutes after applying liquid gasket.
- Wait for 30 minutes after assembly before filling with oil and starting the engine.

CAMSHAFT INSTALLATION

Open the valve lifters in the crankcase.

Install the camshaft [1] to the crankcase [2] by aligning the punch marks [3] on the camshaft and the crankshaft [4] (marked on the timing gear).

BREATHER

DISASSEMBLY/ASSEMBLY

Remove the charge coil (page 8-8).

BREATHER COVER INSTALLATION

Clean the mating surfaces of the breather cover and crankcase of old liquid gasket, oil and other foreign material.

Apply 1.0 ~ 1.5 mm (0.04 ~ 0.06 in) diameter of liquid gasket (ThreeBond[®] TB1207B) to the mating surface of the crankcase as shown.

Install the breather cover [1] and tighten the three flange bolts [2] securely.

NOTE:

- Be sure not to catch the breather filter between the breather cover and crankcase.
- Assemble the breather cover within 3 minutes after applying liquid gasket.
- Wait for 30 minutes after assembly before filling with oil and starting the engine.

GOVERNOR/OIL PUMP/OIL FILTER DISASSEMBLY/ASSEMBLY

Remove the oil pan (page 14-2).

VALVE LIFTER DISASSEMBLY/ ASSEMBLY

Remove the valve lifter (page 14-4).

OIL PAN/CRANKCASE/CRANKSHAFT/ CONNECTING ROD/CAMSHAFT/VALVE LIFTER INSPECTION

CRANKSHAFT AXIAL CLEARANCE

Remove the connecting rods (page 14-4).

Reinstall the oil pan.

Measure the crankshaft axial clearance.

 STANDARD:
 0.05 ~ 0.45 mm (0.002 ~ 0.018 in)

 SERVICE LIMIT:
 1.0 mm (0.04 in)

If the measurement is more than the service limit, inspect the crankshaft thrust washer (page 14-12).

MAIN JOURNAL I.D.: OIL PAN SIDE

Measure the main journal I.D. of the oil pan.

STANDARD:	40.025 ~ 40.041 mm
	(1.5758 ~ 1.5764 in)
SERVICE LIMIT:	40.06 mm (1.577 in)

If the measurement is more than the service limit, replace the oil pan (page 14-8).

MAIN JOURNAL I.D.: CRANKCASE SIDE

Measure the main journal I.D. of the crankcase.

STANDARD:	40.025 ~ 40.041 mm
	(1.5758 ~ 1.5764 in)
SERVICE LIMIT:	40.06 mm (1.577 in)

If the measurement is more than the service limit, replace the crankcase (page 14-4).

CAMSHAFT BEARING I.D.: OIL PAN SIDE

Measure the camshaft bearing I.D. of the oil pan.

STANDARD:	17.016 ~ 17.027 mm
	(0.6699 ~ 0.6704 in)
SERVICE LIMIT:	17.06 mm (0.672 in)

If the measurement is more than the service limit, replace the oil pan (page 14-8).

CAMSHAFT BEARING I.D.: CRANKCASE SIDE

Measure the camshaft bearing I.D. of the crankcase.

STANDARD:	17.016 ~ 17.027 mm
	(0.6699 ~ 0.6704 in)
SERVICE LIMIT:	17.06 mm (0.672 in)

If the measurement is more than the service limit, replace the crankcase (page 14-4).

CRANKPIN O.D.

Measure the crankpin O.D. of the crankshaft.

STANDARD:	44.973 ~ 44.983 mm
	(1.7706 ~ 1.7710 in)
SERVICE LIMIT:	44.920 mm (1.7685 in)

If the measurement is less than the service limit, replace the crankshaft (page 14-4).

CRANKSHAFT MAIN JOURNAL O.D.

Measure the main journal O.D. of the crankshaft.

STANDARD:	39.984 ~ 40.000 mm
	(1.5742 ~ 1.5748 in)
SERVICE LIMIT:	39.930 mm (1.5720 in)

If the measurement is less than the service limit, replace the crankshaft (page 14-4).

CRANKCASE

CRANKSHAFT THRUST WASHER THICKNESS

Measure the crankshaft thrust washer thickness.

STANDARD:	0.95 ~ 1.05 mm
	(0.037 ~ 0.041 in)
SERVICE LIMIT:	0.8 mm (0.03 in)

If the measurement is less than the service limit, replace the crankshaft thrust washer (page 14-4).

CONNECTING ROD BIG END SIDE CLEARANCE

Measure the clearance between the connecting rod big end and crankshaft using a feeler gauge.

STANDARD: 0.2 ~ 0.4 mm (0.008 ~ 0.016 in) SERVICE LIMIT: 1.000 mm (0.0394 in)

If the measurement is more than the service limit, replace the connecting rod (page 14-4) and recheck the clearance.

If the clearance is still more than the service limit with the new connecting rod, replace the crankshaft (page 14-4).

CONNECTING ROD BIG END I.D.

Set the connecting rod lower and connecting rod bearings to the connecting rod upper and tighten the connecting rod bolts to the specified torque.

TORQUE: 22 N·m (2.2 kg-m, 195 in·lb)

Measure the connecting rod big end I.D.

STANDARD:	44.988 ~ 45.012 mm
	(1.7712 ~ 1.7721 in)
SERVICE LIMIT:	45.050 mm (1.7736 in)

If the measurement is more than the service limit, replace the connecting rod bearings (page 14-4).

CONNECTING ROD BIG END OIL CLEARANCE

Clean all oil from the crankpin, connecting rod big end surface and connecting rod bearings.

Place a piece of Plastigauge[®] on the crankpin, install the connecting rod upper, the connecting rod lower and the connecting rod bearings, and tighten the connecting rod bolts to the specified torque.

TORQUE: 22 N·m (2.2 kg-m, 195 in·lb)

Do not rotate the crankshaft while the Plastigauge is in place.

Remove the connecting rod and measure the Plastigauge.

STANDARD:	0.005 ~ 0.039 mm
	(0.0002 ~ 0.0015 in)
SERVICE LIMIT:	0.070 mm (0.0028 in)

If the clearance is more than the service limit, replace the connecting rod bearings (page 14-4) and recheck the clearance.

If the clearance is still more than the service limit with the new connecting rod bearings, replace the crankshaft (page 14-4).

CAMSHAFT CAM HEIGHT

Measure the cam height of the camshaft.

STANDARD: IN: 29.500 ~ 29.700 mm (1.1614 ~ 1.1693 in) EX: 29.400 ~ 29.600 mm (1.1575 ~ 1.1654 in) SERVICE LIMIT: IN: 29.36 mm (1.156 in) EX: 29.26 mm (1.152 in)

If the measurement is less than the service limit, replace the camshaft (page 14-4).

CAMSHAFT O.D.

Measure the camshaft O.D. of the camshaft.

STANDARD:	16.982 ~ 17.000 mm
	(0.6686 ~ 0.6693 in)
SERVICE LIMIT:	17.100 mm (0.6732 in)

If the measurement is less than the service limit, replace the camshaft (page 14-4).

CRANKCASE

DECOMPRESSOR WEIGHT

Check for worn and weakened weight return spring [1].

If the spring is worn or weakened, replace the weight return spring.

Check that the decompressor weight [2] moves smoothly.

If the decompressor weight does not move correctly, replace the camshaft (page 14-4).

VALVE LIFTER I.D.

Measure the valve lifter I.D.

STANDARD:	6.010 ~ 6.040 mm
	(0.2366 ~ 0.2378 in)
SERVICE LIMIT:	6.070 mm (0.2390 in)

If the measurement is more than the service limit, replace the valve lifter (page 14-4).

VALVE LIFTER SHAFT O.D.

Measure the valve lifter shaft O.D.

STANDARD:	5.970 ~ 6.000 mm
	(0.2350 ~ 0.2362 in)
SERVICE LIMIT:	5.940 mm (0.2339 in)

If the measurement is less than the service limit, replace the valve lifter shaft (page 14-4).

CRANKSHAFT OIL SEAL REPLACEMENT (OIL PAN SIDE) LOCATION

CRANKSHAFT OIL SEAL (38 x 58 x 9 mm)

Remove the oil pan (page 14-2).

Remove the oil seal [1] from the oil pan [2].

Apply oil to the outer surface of a new oil seal.

Drive the new oil seal in the position as shown using the special tools.

TOOLS:Driver [3]07749-0010000Oil seal driver attachment60 mm [4]07GAD-PG40100

Apply grease to the lip of a new oil seal.

CRANKSHAFT/GOVERNOR ARM SHAFT OIL SEAL REPLACEMENT (CRANKCASE SIDE) LOCATION

CRANKSHAFT OIL SEAL (38 x 58 x 9 mm)

Remove the crankshaft (page 14-4).

Remove the oil seal [1] from the crankcase [2].

Apply oil to the outer surface of a new oil seal.

Drive the new oil seal in the position as shown using the special tools.

TOOLS: Driver [3] 07749-0010000 Oil seal driver attachment 60 mm [4] 07GAD-PG40100

Apply grease to the lip of a new oil seal.

GOVERNOR ARM SHAFT OIL SEAL (10 x 16 x 5 mm)

Remove the governor arm shaft (page 14-4).

Remove the oil seal [1] from the crankcase [2].

Apply oil to the outer surface of a new oil seal.

Drive the new oil seal until it is fully seated on the end using the special tools.

TOOLS: Driver [3] Pilot 17 mm [4]

07749-0010000 07746-0040400

Apply grease to the lip of a new oil seal.

NOTES

15. WIRING DIAGRAMS

WIRING DIAGRAMS ····· 15-2

15

WIRING DIAGRAMS

GXV630RH (TAF, TAF2, QAF, QYF, QAMT types) GXV690RH (TAF, TAF2, TAF3 types)

GXV630RH (QYST, QYS1 types) GXV690RH (QYS1 type)

NOTES

INDEX

AIR CLEANER CHECK/CLEANING3-4AIR CLEANER REMOVAL/INSTALLATION6-3AIR CLEANER REPLACEMENT3-5BEFORE TROUBLESHOOTING4-2BREATHER14-6CARBURETOR6-5
CARBURETOR STUD BOLT REPLACEMENT
COMBUSTION CHAMBER CLEANING
COMPONENT LOCATION
COOLING FAN/FLYWHEEL ······8-4
CRANKSHAFT OIL SEAL REPLACEMENT (OIL PAN
SIDE) 14-15
CRANKSHAFT/CONNECTING ROD/CAMSHAFT/
CYLINDER STUD BOLT REPLACEMENT
CYLINDER/PISTON
DIMENSIONAL DRAWINGS
DIMENSIONS AND WEIGHTS SPECIFICATIONS1-2
ENGINE MOUNT/P.T.O. DIMENSIONAL DRAWINGS ·· 1-7
ENGINE OIL CHANGE ····································
ENGINE OIL LEVEL CHECK ····································
ENGINE SPECIFICATIONS
ENGINE TROUBLESHOOTING4-2
FAN COVER REMOVAL/INSTALLATION
GOVERNOR/OIL PUMP/OIL FILTER DISASSEMBLY/
ASSEMBLY 14-8
HARNESS ROUTING
IDLE SPEED CHECK/ADJUSTMENT······3-6
IGNITION COIL9-3
IGNITION COIL INSPECTION ······9-5
LOWER SHROUD REMOVAL/INSTALLATION ······5-4

LUBRICATION & SEAL POINT	2-5
LUBRICATION SYSTEM DIAGRAM ······	· 12-2
MAINTENANCE SCHEDULE	3-2
	2-3
	· 14-2
	. 1/_0
	14-3
OIL PRESSURE TEST	· 12-3
	· 12-4
PERFORMANCE CURVES	1-4
REGULATOR/RECTIFIER	8-9
SERIAL NUMBER LOCATION	···1-2
SPARK PLUG CAP INSPECTION	···9-6
SPARK PLUG CHECK/ADJUSTMENT ······	3-5
SPARK PLUG REPLACEMENT ······	····3-6
SPARK PLUG TEST	···9-6
	9-6
STARTER MOTOR	· 10-3
SYSTEM DIAGRAM	0.0
	8-2
	. 10 2
TOROUE VALUES	
	2-7
CHARGING SYSTEM ······	8-3
FUFL SYSTEM	6-2
IGNITION SYSTEM	···9-2
STARTING SYSTEM ·····	· 10-2
TUBE ROUTING	· 2-10
VALVE CLEARANCE CHECK/ADJUSTMENT	3-7
VALVE LIFTER DISASSEMBLY/ASSEMBLY ········	· 14-9
VALVE SEAT RECONDITIONING	13-14
WIRING DIAGRAMS	· 15-2